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SUMMARY

WITH AXIAL

RANGE

A simple methcd is developed to solve plane-stress pro%lems with
axial s-try in the stmin-hardening range baaed.on tlk deformation
theory of plasticity emplo~ng the finite-strain concept. The
equations defining the problems are first reduced to two shnultaneous
nonlinear differential equations.involving two depended variables:
(a) the octahe~ shear strain, a- (b) a parameter indicating the
ratio of prlncipel stresses. By multiplying the load and dividing the
radius by an arbitrary constant, tt Is possible to solve these problems<.
without iteration for any value of the modifled load. The constant is
detemntned later by the boundary condition.

.
The method is applied to the cases of a circular membrane under

pressure, a rotating disk wtthout and with a hole, and an infinite
plate with a circular hole. Two materials, Inconel X and 16-25-6, the
octahedral shear stress-strain relations of which do not fd-low the
power law, are used. Distributions of octahedral shear strain, as well
as of principal stresses and strains, are obtained. These results exe
compared with the results of tbs same problems in the elastio range.
The mriat ion of load with msxim.m octahedral shear stratn of the mem-
ber is also investigated.

The followlng results are obtained:

1. The ratios of the principal stresses remain essentially oon-
stant during loailfngand consequently the defomatbn theory is a@Li -
cable to this ~ouy of problems.

2. In the plastic deformation, the distributions of the principeL
strains, and .ofthe octahedral shear strain, are less uniform than in
the elastic case, although the distributions of the principal stresses
~e more uniform. The stress concentrateion factor around the hole is
reduced with plastic def’ormati.on,but a high strain concentrateion
factor occurs.

●
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3. The deformation that can be accepted by the member before

* failure depends mainly on the maximum octahedral shear strain of the
material. ..
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4. The added load that the member can sustain between the onset of
yielding and failure depends mainly upon the octahedral shear stress-
strain relation of the material.

INTRODUCTION

In the design of turbine rotors, it--is
detailed stress and strain distributions in
and the amount of inorease in load that can

desirable to know the
the strain-hardeningrange
be sustained between the

*

8
!2

onset of yielding and failure. It is also desirable to know the effects
of a notch or a hole in a turbine rotor or other machine members that

. are stressed in the strain-hardeningrange. If a member is thin, it can
be analyzed on the basis of plane stress. For problems of this type,
Nadaf obtained solutions for ideally plsatic material in the caaes of
the rotating disk, the thin plate wfth a hole, and the flat ring radially
stressed (references 1 and 2). For the csae of materiah having strain-
hardening characteristics,a solution of plane-stress problems has been
obtained by Gleyzal for the circular membrane under pressure (reference 3).
The concept of infinitesimalstrain waa used and the solution was obtained
by an iterative procedure with a good first approximate solution. The E
plsstic laws were always satisfied by using a chart given in reference 3.
In reference 4, a trial-and-errormethod is given for rQtat@ disk with
very small plastic strain, in which the el~tic stresses and strains are ?
used as the first approximate values. Experimental investigation for the
high-speed rotating disk is made in reference 5; distributions of plastic
strains (log=lthmlc strains) for different types of disk are measured.
Reference 6 experimentally investigates the burst characteristics of rotat-
ing disks; stress at the center of disk is calculated by aasumhg that the
material behaves elastically at the burst speed; the average tangential
stress along the radius at burst speed is also calculated.

A stiple method of solving plane-plastic-stressproblems with axial
symmetry employing the finite strain concept in the strain-hardening rsnge
and baaed on the deformation theory of Hencky and Nadai (references 7 to
9), which is derived under the condition that the directions and the
ratios of the principal stresses remain constant during loading, was
developed at the NACA Lewts laboratory and 3.spresented herein. The
equations of equilibrium, strain, and plastic law are reduced to two
simultaneous nonlinear differential equations Involving three variables,
one independent and two dependent, that can be integrated numerically to
any desired accuracy. These variables are the proportionate radial
distance, the octahedral shear strain, and a parameter a that indicates
the ratio of principal stresses. The magnitude of variation In calculated
values of the parameter a ti~ change in load directly indicates whether
the deformation theory is applicable to the problem. 4

The method deVQkped is applied to: (1) a circular membrane under
pressure, tn order to compare results obtained by this method with that h
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* obtained by Gleyzal (reference 3); (2) rotating disks without end with a

circulsr central hole, in order to investigate plastic deformation @
such disks and the effects of the hole; and (3) an iflinite plate with a“” ‘“
circular hole or a flat ring radially stressed, in order to investigate

PU the effects of the hole in the strain-hardening range.
OJa

In the investigation of (2) and (3), two materials, Inoonel X and
16-25-6, with different strain-hardening characteristicswere rqkl in
order to determine the effect of the octahedral shear stress-strain
curve on plsstic deformation. The octahedral shear stress of these two
materials is not a power fugction of the octahedral shear strain, so that
more general information can be obtained. Distributions of stresses-and
strains of the sane problems in the elastic range are also calculated for
purposes of comparison.

a

+ b

c
.

h

hi

SYMBOLS

The following symbols are used in this report:

radius of hole

outside radius of membrane, rotating disk, or flat ring

outside radius of plate, very large‘comp=ed ~th radius a

instantaneous thickness of membrane, rotating disk, or plate

initial thickness

arbitrary constant

p?essure on me~brane

radial coordinate

arc length

radial displacement

axial displacement

axial coordinate

paremeter indicating ratio of prinoipal stresses

octahedral shear strain

logarithmic strain

angular coordinat8

mass per unit volume

normal stress, normal force per unit instantaneous#

.-.

area
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T octahedrs3 shear stress

u angular velocity

Subscripts:

b at radius b

*

c at radius c

o at center, for case without hole or at radius a for case with
concentric circular hole

1,2,3 principal directions in general

r,8,z principal directions in cylindrical cooziiinatesystem

STRESS-STl?KtNRZLAITIONSIN ELASTIC DEFORMATION f

The deformation theory of @asticity for ideally plastic materials
was develo~d by Hencky frmn the theory of Saint Venant-Levy-Mises for-. F
the oases In which the directions and the ratios of principal stresses “
remain constant dining loading (reference 7). Nadai extended the theory
to inolude materials having strain-hamlening characteristics (refer-
ences 8 and 9). The conditions for the deformation theory have been
emphasfzsd by Nadai (reference 9, p. 209), 11.yushin(references 10 and
11), Frager (reference 12), and Drucker (reference 13). ~per~ent~ oon-
ducted by Lessens and MaoGregor (reference 14), Osgocxl(reference 15),
and others on thin tubes subJected to combined loads with the directions
and the ratios of the principal stresses constant throughout the body @
remaining mnstant during loading show that good results can be expected
fran the deformation theory.

In more recent experiments on thin tubes by Fraenkel (reference16)
and Davis and l?arker(reference17), it has been shown that even with
considerable variation of the ratio of principal stresses during loading,
the strains obtained from the experiments were in good agreement @th
the strains predicted by use of the defamation theory. Further experi-
mental investigation is needed to determine the etient to which the varZ-
ation of ratios of principal stresses is permissible. In case the vart-
ation is small (app;ox~tely
range),the deformation theory
results.

10 percent over the strain-hardening
oan, however, be expected to give god

#
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* In the present problems with axial symmetry, the directions of
the axes of principal stress remain ftied during loading and it seems
that the ratios of yrincipal strains and of priqci@ stresses may
also remain apprmimately constant. The deformation theory previously ‘

% discussed is therefore used. The stress-strain relations are then as

2 follcfws:

(2)
..

.

T = T(7) (3)

where

*

.

,.. .— —

[ 1
1/2

T = ~ (01-2)2 + (o~-a3)2 + (03-1)2 (4a)

[ 1z1/2Y=; (61-C2)2 + (c&3) 2 + (c@ (4-b)

From equations (1) to (4b), the following relations are obtained:

For plane-stress probleus CJ3= 0, so that

(*)
. .

(5b)
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●

(6a)

(6c)

—
When 01 and CT2 are expressed in terms of c1 and C2~ there i6

obtained

01=2

}

$ (2E1H2)

02=2 ; (2C2+<1)

EQIJAZ1ONSOF EQUILIBRIUM AND STRAIN INVOLVING DISPLACEMENTS

(7)

Equations of equilibrium and equations of strain are derived for
three plane-stress problems with axial symmetry. It is convenient to
use cylindrical coordinates for these derivations; the principle
directions 1, 2, and 3 in the preceding equations become redial,
circumferential,and axial directions, respectively. Because a=l=ge
deformation in the strain-hardeningrange will be considered, the
concept that the change of dimension of an element is infiteslmal
compared with the original dimension of the element is not accurate
enough. Hence, the finite-strain concept, which considers the instan-
taneous dimension of the element, is used. (The equations Or infin-
itesimal strains till be given by ccmeidering them es special cases of
finite strains.) The stress is then equal to the f’orcedivided by the
instantaneousarea end the strains me defined by the following equation:

d

where 23 is the instantaneouslength of a small element having the

original len@h of (2d)0 and j = l} 2) @ 3. ~riu I@stic

deformation, the plastic strains at a certain state depend on the ~th
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by which that state is reached. For the paths along which the ratios
of principal stresses remain constant during loading, however, the

-.—

octahedral shear stress-strain relatio% the value of the o~t~~al ‘--
shear strain, and the value of the ?WinciPal strains me defined

% by the initial and final states (reference 15 and reference 9, p. 209); ~
z 5(Q is then an exact differential and .-.—

It should be noted.that the condftion under which equation (8) was
obtained is also one of the conditions under which the deformation theary
is derived; as long as the deformation theory is applic&ble, equation (8)
can also be used.

.
Circular Membrane under Pressure

. The membrane considered is so thin that {ending stress can be
,negleoted (reference 18, p. 576). Figure l-shows the membrane@amp@
at the rti and subjected to a pressure p, and a small element defiged

ti by ~e and AB taken at radius RU in the deformed state. In the
undeformed state, the same element would be at radius r and defined
by A6 and Ar. The instantaneous thickness of the element and the
stresses acting on the element are also shown in the figure. The two ._ -
principal stresses are Or and Ge, and W is the angle between or
and the original radial direction.

-.

Equations of equilibrimn. - When all the forces acting on the
element in the direction of ~ are summed up, the following equation

of equilibrium is obtained:

or (r+u)h A6 - (~r+A~r)[r~+A(~u)] Ae (h+Ah) cos Aq+
..

2CTe AS (h +~Ah) sin
A6’
~cosv - p As (r+u) Ae sin ~

When A(r+u) approaches zero as a limft, the differential equation of
* equilibrium may be obtained:..

d(~~)
(Nu) m’ h(~g~r) (9)

4
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A csapof the membrane bounded by radius r+u and the forces
acting on it are shown in figure 2. Suming up the forces in the
z-direction yields

8

~ (r+u)2 = Gr~2ti h(r+u)

or

[1
2 ““ “-

*=
1

[1

2hor 2

--1”

—

(lo)

Equation of strain. - Inasmuch as the element at radius r, defined
by ACJ ahd Ar in the undeformed state, is moved to radius r+u,
defined by Ae and As, by the applic,attonof pressure p (fig. 1), by

. use of equation (8) the strains are

.Er= loge ~

-.

H

*

Then

‘r+f+[@y2
Ee r+u
e =—

r

(lML)

(llb)

(m)

Rotating Disk

Equation of equilibrium. - A disk of radius b and thickness b,
rotating about its axis with angular speed u, and an element taken at
radius r+u, defined by Ae and A(r+u), is shown in figure 3 with
all the external forces acting on It. Summing up all forces acting on
the element in the radial direction yields
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[
(02

1

[, 1
pm (r+Ar)2 - r2 Ae

~ A(r+u)r+u+- 2YC

=0

When A(r+u) ap~oaches zero as a limit, the following equation of ,
equilibrium is obtained:

d(orh)

‘+”-= (a8-r)h-&r2hi~&

.

Eauation of strains. - The strain. are

= lo% L&l
% dr

therefore

e‘r=w
d.r

Ce r+u
e =—

r

C’z
e h=—

‘i

9

(12)

(U)a)
.-

-“(m’b)

b

?

.
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I~intte Plate with

An infinite plate

NACA TN 2217

Circular Hole or Flat Ring Radially Stressed

uniformly stressed in its plane in all directions
and having a di.rcularhole is shown in figure 4. The whole system is
equivalent to a very large circular plate of’radius c with a small
concentric circular hole radially subjected to the same uniform stress
a on the outer lmundary. The soluticm obtained in such a plate within
any radius b can also.be considered as a solution of a flat ring with
outer radius b and imer radius a, that is, uniformly loaded at the
outer boundary with the radial stress oh obtained W the plate
~olution.

The equations for this case can
the two P=-vious caees, or by simply
zero in ~he
case of the

case of the membrane, or
rotating disk.

EQUATIONS OF EQKIIJBKUM

be obtained in a manner similar to
setting dw/dr and w equal to
setting w equal

AND coMPATn31LITY

to zero in the

.

u

IN
.*

TERMS OF PRINCIPAL STRESSES AND STRAINS

Circular Membrane under Pressure t’

By combining the equations previously derived the following set of
independent equations, which define the problem, are obtained:

(6a)

(m)

(6c)

(5b)-

T= r(y) (3)
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to
03
N-1
+

‘r=*[+[&j’”
~e ‘i-ue =—

r

(r+u)
d(arh)

m’
= h(~e-ar)

(1.la)

(llb)

(llc)

(9]

[1dwz= 1
m

[“1
. (lo)

2
..

-a ‘“1
x

These equations are 10 independent relations of the 10 mknawne Or,

* ae~ ‘r> ‘8> ‘z> Y> 7> h~ U) am W. -

_,— —

If equation (llb) is differentiated with respect to r and combined
with eqxation (ha),

d Ee e(+%)
‘r= @2-1

{[ 1}.“l+&
(14)

Substituting equation (10) in eq-tion (14) to eliminate w yields
following ecyuation of compatibility:
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Equations (9) and
eliminate u and

r

(15) oan be simplified by using equations (11) to . *
h, which results in

-1 (17)

The ten equatlcms defining this problem are now reatwa to seven
independe~t equations, (6a), (6b), (60), (5b), (3), (16), and (17),
with the seven u*- Or> U~~ Cr, Ce$ Cz, T, and 7.

The solution of the problem is simplified by further reducing
equations (16) and (17) to the following forms:

~ dcJr
-—+cr
kd~

()

~~=(~~~r)e(;~ce)~-~g~~-cz~~~.,rkdr
k’ (18)

where ‘k is any arbitrary unknown oonstant with the dimension of
length. By using the two parameters ./k and pk/hi, it is then
possible to solve the problem in a simple, dfreot way without use of
the iterationmethod. This fact will be further discussed in the
section METHODS OF NUMERICAL INTEGRATION.

#

*
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Rotating Disk

The set of equations that define

17(0cr=~~ ~

ee =$;(~e

r

this problem are:

- *O*) (6a)
— .-—

- *Q (eb) ‘-

1

(60)

e%=U.&t@.

,
‘e ~u

e =—

r

%h
e =—

‘i

(13a) .

(mj “—.
(13C)

(12)

These equations are nine independent relationq of the nige unknowns
ar) ~e> Cr> ~e~ ~z) 7> T> h, and u. If equation (13b) is

differentiated with respect to
-.

r and ccmbined with equation {13a),
the following compatibility equation is obtained: ——-—

(19)
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As in the c&e of the membrane, u and h can be eliminated
frcm the equilibrium equation (12) by using equations (13), whioh
yield

(20)

—

.

!!

The nine equations defining this.problem are now reduced to seven
independent.equations(6a), (6b), (6c), (5b), (3), (19), and (20), wtth
seven Unknowns Or) De, ~r> ~e> ~zJ Tj and y.

The solution of the problem is,made simpler by furthez?reducing
equations (19) and (20) to the following forms:

r aur ~&z
-—+- or—-=

‘1

(cfQ-o-r)J’r-’@ - @3@: 2 e(-%)

()
‘d$

()
‘d $ ()

(21) r

r ‘8 (~r-~~) -,1-—= e

()

.
kd~

By using the pareneters r/k and wk instead of r and ~, a simple
direct solution is possible for any arbitrary value of oik with k -
to be de~rmined by the boundary condition.

Infinite Plate with Ciroular Hole or Flat Ring Radially Stressed

The equations of equilibrium and compatibility for this case are:

(22)

When equations (22) are oombined with equations (6a), (6b), (6c), (5b),
and (3), there are seven equations with seven unknowns.
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Y EQUATIONS OF E~ AND COMl?ATEIEHTY IN TERMS OF

% RATIO OF l?KtNCIPALSIYIESSES
m

E’

4
In the -ceding section, dis~acements are eliminated frcxnthe

equations, which result in seven equattons involving the seven unknown
quantities Or, 08J Cr, ce, c~,,T ,- and 7. The quantity Cz can

be expressed in terms of Cr and ce (from equation (1)). Two of the

f0U3?UIlkIIOWZISCrj Oe> Cr, and 66 my be eliminated by using
.

equations (&) and (6b) or (7). The quantity T is a known function
of 7 that is experimentally deter@ned.. The problem is then reduced
to one involving three unknowns. Obtaining the solution of the result-
ing equations is nat, huwever, a simple matter.

It is proposed that this difficulty can be.avoided by usi~ the
foIlmwing transfOzmlation: .

.-

%ar =jlTT cos a

or

Then or and Oe satisfy equation (3a). The octahedral shear stress

T, a funotion of y, in the preceding equations verles with r/k
and also with loading. Such a transformation &s been used for the
ideally pls8tic material (7 = constant) by Nedai in the section ~’Yield-
ing in Thin Plate with Circular Hole or Flat Rings Radially Stressed*’
(reference1, p. 189) an~ for a rotating disk (referenoe2). From
equation@ (8a), (8b), and (23), the prinoipal strains can be also
expresseiiin terms of 7 ati a: “

. (24)
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The equations of equilibrium
~roblems considered here are then
the followin,gfozm:

and oompatibility
obtained In terms

NACA TN 2217 .

for the three ?
of y and a In

(25)

where the coefficients A, B, C, D, E, arid 1? are functions of ~
and r/k. For the circular membrane under pressure, frmn

::uation (18),

A=

B=

c =

D=

E=

F=

.

(@cm ~ + sin a) - (@ sin a - cos

2(cos a) e((

[

-;7CMU) ~-

(@ sin a - cos a) 7

-(fl%cmsa+sina)

{[

(J-. ~ cos a)
2@ l-e 1-

m

(26)
.

R

.
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.

17

e For

A=

B=

D=

E=

? F=

.
For

A=

B=

D=

E=

F=

the rotating disk, from equation (21),

(Wcosa+ sina)” (@3klG-coea)-

<

(@sins - cos a) y

- (z@cos a+ sin a)

the infinite plate with a oircular hole, frcm equation (22),

(ticos a+’sins) - (@aina-cosuJyc~a

1

(@sin m-cosu)y

With these transfozmations, thes to simply a numerical integration of
equations (equations (25)) involving

+
●

(28)

solution of the problems is reduced
the two stiultaneous differential
thetwounknowns’y emd a.-

.
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Furthermore, the parsmeter 7, being the octahedral shear strain, 1
directly indicates the stage of plastic deformation at any point under
my 10SJ3..(In plastic problems, according to the deformation theory, the
individual stress and strain distribution cannot give m clem a picture #
of the stage of plastic deformation es can the octahedral shear strain.) I-i
AlEo, the perameter u indicates the ratio of the principal stresses or
strains. At any point, if CL remains constant during loading, the ratio
of principal stresses at that pint remains fixed. The value of a
obtained at each point in the calculation during loading directly indicates
whether or not the deformation theory is applicable to the problam.

The value of a is known at the boundaries or the center. From
equatione (23) and (24), in the case of a circular membrane under
pressure,

when r/b . 0,

% ‘ Og

al
Jr=-=
2

1.5708

when r~b = 1,

69=0

●

a =$x = 2.0944

In the case of a rotating dfsk without a hole,

when r/b = 0,

‘r = ‘e
l-ta.-. 1.5708
z

when r/b = 1,

%
=0

l-t
al.-. 0.5236

6

*
f

r

.
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m In %he case of a rotating disk with a hole,

when r/a = 1 and r/b = 1,

For the infinite

when r/a = 1,

‘r = o

a = Z = 0.523S
6

@ate with a oircular hole,

%=0
Tt

CL .-= 0.5236
6

when r/a approaches c/a or a value large

r

% = Ge

* Sa.=-= 1.5708
2

EQUATION3 OF EQIJTLJB= AND COMPA!I!~~lZL!Y

~’TEFMSOF a AND

The final forms of the equilibrium and
the case of small stmins are given in this
infiniteshal strain is defined as follows:

19

COlll~d with 1,

FOR

Y

lMmmTEsIMAL

ccmq@ibility equations for
section. The conoept of
T%e ohame of dimensions tie

small ccmpared tith the original dimensfans, but are iarge enough so
that the elastio strain oan be neglected. The equations presented wan
be obtained either by direct derivation as was previously done or by
reducing frm the equations for finite strains through expanding the

ef(a~~) te~ in series and.neglecting the small teq: For infini-
%esmal
D, E,
script
7) are

strain, the coefficients (funotions of a and 7) A, B, C,
and F in the preceding equations are denoted with a super-

prime in similar forme, but the coefficient (functions of u ad
simpler than those for lecrgestrain.

.
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,rda.—
‘kd~

()k

r daD’-—
kd~

()k

For the circular membrane under

Ciy ~,+B’~—=
kd~

()k

,r dy =F,+E-—
kd ~

()k

pressure,

>
A’ .~3coa G+%ina I
B’=(@sina-cosa)~&

D’ = (~ sin a - cos a)y

E’

F’

-(@ cos a + sin a)

[

~r

@ ‘IF2~7 cos a + ~

1T(W sin a - cos a)

For the rotating disk,

Bf=(@sina-co8m)~~
T d7

D’ = (~sin a - cos a)7

Ef = -(@ cos a + sin a)

f
F! = 2 3 (COS a)?’

/

2

(29)

(30) ‘

(XL)
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a For the infinite plate with a oircular hole,
.—

A’=@oosm+ sina”
P’w
m B’ =(~3sina-cosa)LQl
m T dy

1’
c’ =2cosa

D’=(fisina-. cosm)

E’ = -(~ 00s m + sin a)

F’ = 2 @ (Cos a)~
I

(32)

METHODS OF NUMERICAL INTEGRATION

Two methods are developed to solve the differential eq~ations (25).
In the.first method, the differential equations are numerically hxbegrated*
along r/k, which is ooneidered the Independent variable. In the seccnd
methcd, a IS considered the independent variable. Because many terms

, in the eqyations are trigonometric functions of a, the use of a as
the independent variable considerably reduces the work of conqyrtation.

. Numerical intimation with r/k as independent variable. -
Equations (25) can be written in the following forms:

For the case of
~ F’ are used in

F, respectively. If

r da.—
kd~

()k

(33)

small strain,
equation (33)

at any yoint

. CE-I?13
m

1

.
. FA-CD
EA-BD

the terms A’, B’, C’, D’, E’,
instead of A, B, C, D, E, and

Und7arebwn,*ana

& can be calculated by equations (33). At the bcnmdaries or the
P

oenter, a is knuwn, but 7 is to be determined by the load. Only

*
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one value (unknown) of 7 correspondingto a particular ha exists
on each boundary. It is therefore clifficult to start the numerical
integrations on the boundary with the correct value of 7 corresponding
to a given lo&i. Also, in plastic problems covering the strain-
hard.eningrange, the method of superposition is invalid. um.zallY,a
method of iteration is used to solve the problem (for exxunple,refer-
ence 3). In the method presented herein, an arbitrary but unknown
constant k has been introduced in equations (18), (21), and (22). For
the cases considered, the terms in the equations

always multiplied by r, so that
()

=2 can be
%

inecfuations (18) and (26) and (Wr)2 as (@k)2
and

(or
the

of

(27).

that involve load are

~ry (iy(?r
written as

E
in equations (21)

The numerical integration can then be started at the inner boundary
at the center if there is no circular hole at the center) by using
lmown values of CLo, a desired value of Yo, and arbitrary value

() 2 for the rotating disk. ThePk 2 ‘for t~ membrane ~ of (@k)
-

/41
numerical integrations can then be carried out, obtaining values of CL
and 7 at different values of r/k, until a progressivelyrea5hes
the value that satisfies the other boundary condition. Becmse the
value of r is known at the boundaries, the value of k can be
determined for the selected value of 7.. The number of points and the

fozmnzlasused in the calculation depend on the accuracy required (ref-
erences 19 and 20). It has been found that if the formula for evaluat-
ing definite integrals is applied after using the forward integration
fomula (references 19 and 20), high accuracy can easily be obtained.

The procedure used herein to obtain solutions is the same for each
problem. Calculationsare started from the inner boundary (or from the
center if there is no ciroular hole at the center) with the lamwn value
of Uo, the desired value of 70~ and the arbitrary loading term. Tk
parameter CLo is equal to ti/2 at r/b = O for the memln’aneand for

the solid rotating disk and is equal to Yr/6 at r/a = 1 for the
infinite plate with a circular hole “andfor the rotating disk with a

hole. The arbitrary loading terms are
()

pk 2

5
and (wk)2 for the

membrane and the rotating

[1‘& o’corresponding

\-:1/

disk, respectively. Then [1da armi
W o

to a. and 70 at the inner boundary or the

.

,

r

d

u
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E center, are obtained from equation (33). The following formulas for
forward.integration are used to determine the first approximate values
of a and 7 at the next point (al* and 71*):

E

.

[()U1*. CLO+ z -
kl

au

()1[(jg
kod~

k.

1

(34a)

( )1[( J

“r d7
Eoaq

k o

By substituting %* and yl* into equation (33), approximate values

‘f [@l. - [%1.

are obtained and the second approximate values

of CLI afi 71 (~= _ 71*) can be computed from the following
formulas: /

The values of ~~ and 71* are substituted into equation (33) again

in order to calculated the values of

i~l am ~1: ‘Yweof

the folluwing fomnulas for evaluating definite integrals, the values of
~ and Yl are calculated.: -—

N
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This procedure,is applied to the next point, and so forth, until the
value of

Y
a reaches the required value of ~ at the outside boundary

(~ =2/3fi at ?/b = 1 for the memlrane, ~ = z/6 at r/b = 1 for
the rotating disk, and ~ = r(/2 at r/a . c/a for t~ thin @ate

with a circular hole). “Inasuch as 3
d

()
~ =~,. .
k-% k

the loading terms are determined as follows:

For the ~embrane,

For the rotating disk, ,

@b)2 = (wk)2(:~

(33a)

(33b)‘
Y

?

For the infinite plate with d oiroular hole,

or for the flat rzng radially stressed at the outside diameter b,

(330)

(33d)

where t~ ind ~ are the tension per unit

length at r = c and r = b, respectively.

original circumferential

“

.-. ,
.-
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. Numerical in-bemtton with a as independent variable. -
Equations (33) can be written in the folhwing forms:

U FA-CD—=—
da c1?!-FB

)

o$ AE-DB r—=-— .
da CE-BF k

J

(35)

By using equations (26) to (28) and expanding ef(a~y) into a series,
the following equations ame obtained:

AF-CD=2q@-2HJ7-

2@L ‘2(a”) ‘k’’)=%)

AE-BD =
‘Z2 ‘J2 ‘(a~y%)

For the rotating disk, from equatione (27),
%
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For the infinite plate with a oiroular hole, frcm equations (28),

CE-BF = -2HL - 2 f/%J

f-

(AF-CD = @ -2@L

‘b’y’w’’(a”)
r1 } 1- fl(a,7) 7 ‘

AF-BD = -L2 -.2 .@,7,;Qz)

where

G = sin a

H=cosa

J =@slna-oosa

L .ficosa+sina

mm
z

(38)

J

and

“(a”)‘*
[,-$(-q

J= 1 - * ;(COS U)7 + *(COS2 U)yz - . . .

{
- ~(oos a)y

f2(uj7) = e

.

9

=1-
[ {

1 ~(cos3 a)#’ + . . .~(cos .)7 + *xij(cos2 a)72 - ~ z

zl- $~cos U)7 f~(u,7)

,



. RACA TN 2217 27

+,7,:,:)=

7 dT
T dy

[

1-

1-

The symbols G, H,

Y“

c3sina-oosa

J, and L are trignmetria functions of a
only;“ Kl afi- ~- are constants during csloulation. The symbols

fls fz> f3J and g are functions of a and y; d is a function

of a, 7, and ~.
k

This methcd is used herein in the solution of an infinite plate
-.. .

with a circular hole. The procedure of numerical integration is
.

similar to that used in the first method.. The first four temns of tk” ‘“

series of ef(a,7) are used; the acouracy of the result is the same
as that in the first method, with a ~auction of one half in computaticn.

Both methods psented. herein are used to obtain the solutions for
the given vd.ues of 70. The purpose of the present ~per is to obtain

solutions for the enttre strain-hardeningrange and the methods Cievel-opea -
are very convenient for this pu&pose. If, however, a solution for &ly
a particular value of loading is required, it oan be obt%inea hy inter-
polating between values obtained from two or three solutions correspo@-.
ing to loading near the specified value.

.
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.NUMERICAL ImAMmEs

Membrane.- In order to compare the results obtained by the method
developed herein to those obtained by Gleyzal (reference3), one numeri-
cal solution for infinitesimalstrain is calculated by using the T(7)
curve of the tensile test in figure l“of referenoe 3. Xnasmuch as
reference 3 states that: “For simplicity, strain will be taken to mean
conventional strain (ds-dso)/dso where de and l%lo are final and

initial aro length, respectively.”,equatio~ (29) and (30) for infini-
tesimal strain are used. The calculation is started at r/k = 0.00S.
Values of U. = 1.5708, y. = 0.0299, and pk/hl = 55,920 are used.

-Numerloal solutions for finite strain (equations (25) -
... $m~ated. The 7(7) ourves of two materid.s, Inconel X
and 16-25-6, are plotted in figure 5(al. These data were supplied by
W. F. Brown, Jr., H. Sohwartzbert, andM. H. Jones. The same 7(7) curves
are plotted on logarithmic coordinates in figure 5(%). These materials,
Inconel X and 16-25-6, of whioh T is not a power function of 7, were
ohosen so that more general information can be obtained. It should be
mentioned that the given octahedral shear stress-straincurves (fig. 5) *
of these two materials have not been corrected for the triexlality and
nonuniform stress distribution introducedby necking, and consequently
do not represent the exact stress-strainrelation after neoking of these c

two material.a. The solutions ob.~ined from the T(7) curves of the
tensile test after necking can, however, represent the solutions corre-
sponding to materials having the exaot T(Y) curves shown in figure 5 and
for simplicity the materials are herein still referred to as Inoonel X
and 16-25-6.

—

In each case, the calculation is startedat r/k = 0.005, as in the
case of a membmne.

Three solutions are also obtained for a rotating disk tith a central
hole, using Inconel X. Calculations are started at r~a . 1.
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.

9

All numerical examples are given in the following table:

solid-rota.t

Material I Y.

-t-

.InconelX 0.04
.1152
.30

16-25-6 0.04
.1152
.30

Rotating disk with C

.ngdisk

&Y-
1 x 105
1 x 105
1 x 105

1 x 105
1 x 105

2.5 X 105

!ntralhole—

Material 70

Inoonel X 0.30 1 x 10:
.30
.30 :;%

-.

Infinite plate with ciroular hole. - The calculations for this
problem are carried out for the case in whioh Or = O at r/a = 1.

The value of a.

or is different
should be used..)
considered. The

at r~a = 1 is then 0.5236. (For other cases where
fran O at rja = 1, the corresponding value of CLo
The same materials as in the previous problem sxe
numerical examples are:

Materfal ?’0

Inconel X ().o~
.1152
.1871
●30

16-25-6 0.04
.1871
.30

.

.
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RESULTS AND DISCUSSION .
.

The radial and circumferentialstresses Or and ue, respectively,

obtained-forthe case of a circular membra& are plotted against r/b
in figure 6. TWQ curves, taken from reference 3, correspondingto ~
calculatims for about the same pressure used in the present calculation, A
are included in the figure for comparison. In the present calculation,
the T(Y) curve given in’figure 1 of reference 3 and the same
infinitesimal-straindefinition based on the original dtiension is used.
In order to be consistent, the initial thickness hi is also used in
the calculation rather than the instantaneousthickness h, which is
used in reference 3.

The variations of u with the radius for the rotating disk and
for the infinite plate with a cfrcul-arhole for different loads and
materials are plotted in figures 7(a) and 7(b), respectively. The vari-
ations of a with Y. (or loading) at variouE radii for the rotating
disk and the infinite plate with a circular hole are plotted in
figures 8(a) and 8(b), respectively. Similar curves for the ratio of the
principal stresses ~/o@ are shown in figures 9(’s),9(b), and 10. Whsn w

figure 7 is compared with figures 9(a) and 9(b), it is seen that the
variations of a tith radius are very similar to the variations of
@Se with radius, although the relation between a and Or/Oe

#
is nut

line=.

Examples for a membrane with a large strain are not calculated
herein, because the result of reference 3 is suiYicient to give an approxi-
mate variation of the ratios of principal stresses along the radius during
loading, although the in$initeslmal-strainconcept is used. The variations
of the ratio of nrinclmal stresses with radius for different loads, based.
on the values of Or and OG given in figures
are calculated and plotted on figure 9(c).

The values of Or are plotted against ‘e
under different loads for the rotating disk and

8 and 9 of referen~e 3,

at different radii

the infinite@ate with
a circular hole in figure 11. The heavy solid and dashed curves
rewesent the vaues Of ar and 06 at different radii for any given

load and are called loading curves. The loading curve moves away from
the origin with increasing load. The light solid and dotted lines con-
necting the different loading curves at a given radius and extending to
the origin represent the values of ur and Ue at different lotis for

any given radius and are called loading paths. Also shown in the fig-
ures are the yielding surfaces, which are ellipses umier the deformation #
theory.

.
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* A clear picture of the variation of the ratios of principal .
. stresses in this group of problems with different loads and with “-

differe~t materiels is given in f@ures 7 to 11. St is evident ttit
the ratios of principsl stresses remain essentially constant during -

% 10aai~. For this grcup of problems, the defonuation theory is there-
2 fore applicable and ej, dei?inedby equation (8), represents the true

stnln and is determined by the final and initial states.

The vsriatione of 7 and Y/70 with radius are plotted in figures 12
and 13, respectively, for the rotating disk ati the infinite plate with”
circular hole. It is interesting to note that the curves in fi”&6-13 for
different loads for the same material are quite close. The ctiies fm”
different materiak on figures ? and 9.are also close, but are not so
close in figure 13.

. . .

The distributions of principal stresses and principal strains along
the radius for the rotating disk and for the infinite plate with a“ “–-”
oircular hole are plotted in figures 14 and 15, respectively. For
ccmnparisonjthe variations of U8/(08)b~ ce/(c6)b~ and 7/7b with ““-

.
radius for both the elastic and the plastic range are plotted in fig-
ures 16 and 17. (The equations for the elastic range are given in the

*- appendix.) If only tilestress distributions for the elastic and plastiG
cases are compared, it is seen that the stresses are more uniform in the
plastic state; but if the distributions of the principal strains and the
octahedral shear strain for the elastic and the plastic cases ere
compared, it is evident that a less-uniform strain distribution is
obtained in the plastic state. It is of special interest in the case
of the finite plate with a hole to note that with plastic formation,
the stress (tangential stress) concentration factor around the hole is
reduced, but Im–tead there is a high concentration in
and in octahedral shear strain. A similar conclusion
centration factor around a circular hole in a tension
in references 21 and 22.

principal strain
regarding con-
panel is obtained

along the radius .fora rotating disk and 08/(08)0 am ~e/(~e)o for

an infinite plate with a circular hole are plotted in figures 18 and 19,
respectively;

%J(ce)o for
together; but

~terlals, as
*

The curves representing G#(Or)o, cr/(Er)o, and

different materials and different values of
the curves of 08/(Oe)o are

we~ as for different values

quite different

of Yo.

Yo are close
for different

—

.

——
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The relation between load and maximum octahedral shear strain Y. .

of the rotating disk and the infinite plate with a hole are plotted in
figure 20. The tezms p (@b)2 and ~/hi are ,designatedthe load for

the rotathg disk and the infinite plate with a hole, res~ctively.
It ie shown In these figures t,bt the load increases considerably for g
Inconel X when the value of 70 increases from 0.04 to 0.30, whereas the
load for 16-25-6 increases only slightly.

In figures 7, 13, and 16 to 19, it is sham that in the case of the
@ate with a hole, the variations of a, 7/70> cr/(cr)O# w ce/(ce)o
tith radius are essentially Independent of the value of 70 of the plate
and the T(7) cnzrveof the material, at least within the range of T, 7
variation enolosed by those values of the two materials used. Frcm these
results, it can be seen that the deformation that oan be accepted by tk
plate before failure depends mainly on the maximum octahedral shear stmfn
(or ductility) of the material, whioh would not be true if the strain
distributionswere a function of the T-7 curve. In the case of the
rotating disk, however, a slight effect of 70 and the T(7) curve is

apparent on the strains; this effect seems to be caused by the bcily-
force texm of the disk.

The stress distribution that will determine the load the member can
sustain is now considered. From figures 16 to 19, it can be seen that
the variations of Oe/(O@)o with radius depend upon the T(7) curve of

the material and on the value of 70 of the member. I&cm figure ZO, it
is also seen that the load depends on the T(7) curve. .It therefore
follows that the added load that the member can sustain between the onset “-
of yielding and failure depends on the T(Y) curve of the material. The
octahedral shear (or effective) stress and strain curve of the material
should therefore be used as a criterian in selecting a material for a
certain member under a certain loadtng condition, because consideration
of the maximum octahedral shear strain of the material alone (or ductility
alone) is insufficient.

radius of three rotating disks with a hole are shown in figure 21. These
three disks have the values of ratios of outer and i-r radius b/a
equal to 5.32, 12.45, and 28.12, respectively. The tangential stress
~e, the tangential strain ce, and the octahedral shear strain 7 are

much less uniform then In the ease of a solid rotating disk. The ratio
Of == d rein- octahe= she= strain 7~7b is egu~ ‘o 7-41

for a disk with b/a = 5.32, equal to 11.75 for a disk with b/a = 12.45, .
and equal to 14.1 for a disk with b/a = 28.12; for a solid disk of the
same material, the ratio ‘o/7b is about 5.3.

.

.
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. The values of the load, deftriedby p(Ub)2, for rotating dis$s
having different ratios of inner to outer radius a/b are represent&3
by the solid curve in figure 22. These disks were made of Inconel X
and reach the s- maximum ootahedml shear strain y. = 0.3 at the

%
3

inner radius of the disk. The dashed curve in the seinefigure is
obtained by extending this solid curve toward a/b = 1, where the value

of p(@b)2 can be determined hy considering & rotating ring with
a/b-1. The figure indicates approximately how the load p(Ub)2
varies with different disks having clifferent ratios”of inner a~ 6uter
radius and reaching the same maxinmm octahedral shear strain at the
inner radius of the disk. ‘lhevalue of p(~b)2 for a solid rotating
disk made of Inconel X with y. = 0.3 at the center of the disk is also

indicated in the same figure.

The preceding results and discussion were obtained for the plane-
stress problems with axial s-try in the strain-hardeningrange in

--

which the elastic stmins are negligible ccqared with the plastic
straiti. Whether these results and discussions are true for general.two-
dimensional or three-dimensional problems, or for the problems involving . ____

. the region in whioh elastic strain is not small ccmpared with plastic
strain, or for partly plastic problems, can be determined only by a
detailedanalysis of each case.

●

COIW3XJSIONS

The results obtained in the cases of a membrane, a rotating disk
without and tith a hole, and an infinite plate with a hole in the stzain-
hardening range of two materials, Inconel X and 16-25-6, whose stress-

—.

strain relations do not follow the power law, show that:

- (1) The method develo~ed not only accurately solved the plane-
plestic-stress problems with axial synm&ry in a stiple,manner, but also” -
gave a clear picture of the octahedral shear strain and the ratio of
principal stresses during loading. ..-

(2) The ratio of the principal stresses in such cases reyained. _ ,
essentially constant during loading and, consequently, the deformation
theory is applicable to this group of problems.

(3) The distributions of principal strains, and”ootahedrsl shear
strains, on the plastic state are less uniform than those in ekstic
state, although the d3stributtons of tangential”stresses appear more unifnorm
in the plastic state. The stress concentrateion factor ‘arounda hole is

..

x reduced in the plastic state, but instead there is a high concentration
of prtncipal strain and of the octahedral shear strain.

*
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(4) The ratios of the stralna along the radius of their maximum
value’ere essentially independent of the value of the maximum octahedral

.

shear strain of the plate and the octahedral shear stress-strain curve
of the material. Hence, the deformation that can be accepted by the %

plate before failure depends mainly on the maximum octahedral shear 3

strain (or ductility) of the material.

(5) The stress distributions depend on the octahedral shear stress-
strain curve of the material. Hence, the added load that the member can
sustain between the onset of yielding and failure depends mainly upon
the octahedral she= (or effective) stress-strain curve in the strain-
hardening range of the material.

Lewis Flight Propulsion Laboratory,
National AdvisoKY Committee for Aeronuatict3,

Clevelandj Ohio, February 28, 1950.
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EQUATIONS FOR ROTAKCNG DISK

CIROULAR HOLE IN

Rotating

AND IKFINZCE IZATEIZCITE

ELASTIC!RKNGE

Disk

For a solid disk tith the radisl stress at the periphery
equal to zero, the principal stresses can be e~ssed in the
equations (reference 23, p. 68):

d

where V is Poison’s ratio.

.
At r=b,

Dividing equation (39) by (~e)b @el~

The stress-strain relations of
-e =:

J

plane-stress problems in

3!5

.

(r = b)
fol.l~ing ._ >.k

(39)

(39a)

the elastic

(40)
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where E is the modulus of elasticity in tension and compression.

2217

.

Substituting’equations(39) into equations (40) yields:
#

Cr = [ .~(,q]~ (1-v)(3+V)(p6?b2) 1

., -.

[ -R($Y]J=+ (1-W(3+V)(CAA 1Ce

or

(40b)

..-

The equations for-the octahedral sheti stress and strain-given by -
equations (4a), (4b), and (5a) can be applied to both the elastic and
the plastic range, but equation (5b) is true only in the plastic range.
The octahedral shear strain in the elastic range can be calculated by
equation (4b) or simply by using the following equation:

y=2M.T = .-E (0 Groe+o-az)1’2
E ,E 3 r

(41)

Substitute equations (39) in equations (41) to obtain:

, @ l+V4 [
41/2

= izii(&v
(@02b2) (%V)2 -4(l+v)(3+v)(:~+ (7+2v+7h (~)1

(41a)
or

[

1/2
r2

()]

r4

*=& ‘13+V)2‘4(1+ o(3’v) k) + ‘7’2wm2) =
(41b)
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. and

v = 0.29 for Inconel X (reference 24)

v = 0.286 for 16-25-6 (reference25)

Tnfinite Plate With Circular Hole

For a unifomly lmded infinite plate with a circular hole, the
principal stresses are (reference23, p. 56):

37

A
‘r

==-+2C
rz 1

where A and C are arbitrary
herein, the boundary conditions

constants. For the case c-idered
are:

(42)

atr=a

atr=b

used to detemine the arbitrary
..

These hundary conditions am
constants A and C, which @_eld.

9

(42a)

.

.
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Substituting equations (42a) into equations (40) Yieids

or

1
(or)b (1+($ - (l+V)

cr .-—
E

()

2
1- ;

()

r2

1 (qb
ZwkwCe’~—

()
1- ; r2

()K 1

H($ - (l+v)
&=

[ ()]()(l-v) +-(l+U) :2 :2

Eg ()(1-u) :2 + (l+V)

~’ [(l-v)+O+q;)q(Y!

(42b)

(43)

(43a)

.

●

,,.
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Substituting equations (42a) into equation (Q) yields

or

L -1

H
r4+,

7 ()—=

7’ ;’(:fl($r

—

3.

(44)
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